Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
IEEE Open J Eng Med Biol ; 5: 32-44, 2024.
Article in English | MEDLINE | ID: mdl-38445238

ABSTRACT

High-density multielectrode catheters are becoming increasingly popular in cardiac electrophysiology for advanced characterisation of the cardiac tissue, due to their potential to identify impaired sites. These are often characterised by abnormal electrical conduction, which may cause locally disorganised propagation wavefronts. To quantify it, a novel heterogeneity parameter based on vector field analysis is proposed, utilising finite differences to measure direction changes between adjacent cliques. The proposed Vector Field Heterogeneity metric has been evaluated on a set of simulations with controlled levels of organisation in vector maps, and a variety of grid sizes. Furthermore, it has been tested on animal experimental models of isolated Langendorff-perfused rabbit hearts. The proposed parameter exhibited superior capturing ability of heterogeneous propagation wavefronts compared to the classical Spatial Inhomogeneity Index, and simulations proved that the metric effectively captures gradual increments in disorganisation in propagation patterns. Notably, it yielded robust and consistent outcomes for [Formula: see text] grid sizes, underscoring its suitability for the latest generation of orientation-independent cardiac catheters.

2.
Animal Model Exp Med ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477441

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is one of the most common malignant brain tumors that mainly affect children. Various approaches have been used to model MB to facilitate investigating tumorigenesis. This study aims to compare the recapitulation of MB between subcutaneous patient-derived xenograft (sPDX), intracranial patient-derived xenograft (iPDX), and genetically engineered mouse models (GEMM) at the single-cell level. METHODS: We obtained primary human sonic hedgehog (SHH) and group 3 (G3) MB samples from six patients. For each patient specimen, we developed two sPDX and iPDX models, respectively. Three Patch+/- GEMM models were also included for sequencing. Single-cell RNA sequencing was performed to compare gene expression profiles, cellular composition, and functional pathway enrichment. Bulk RNA-seq deconvolution was performed to compare cellular composition across models and human samples. RESULTS: Our results showed that the sPDX tumor model demonstrated the highest correlation to the overall transcriptomic profiles of primary human tumors at the single-cell level within the SHH and G3 subgroups, followed by the GEMM model and iPDX. The GEMM tumor model was able to recapitulate all subpopulations of tumor microenvironment (TME) cells that can be clustered in human SHH tumors, including a higher proportion of tumor-associated astrocytes and immune cells, and an additional cluster of vascular endothelia when compared to human SHH tumors. CONCLUSIONS: This study was the first to compare experimental models for MB at the single-cell level, providing value insights into model selection for different research purposes. sPDX and iPDX are suitable for drug testing and personalized therapy screenings, whereas GEMM models are valuable for investigating the interaction between tumor and TME cells.

3.
Rev Mal Respir ; 41(4): 274-278, 2024 Apr.
Article in French | MEDLINE | ID: mdl-38480096

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal lung disease of which the origin and development mechanisms remain unknown. The few available pharmacological treatments can only slow the progression of the disease. The development of curative treatments is hampered by the absence of experimental models that can mimic the specific pathophysiological mechanisms of IPF. The aim of this mini-review is to provide an overview of the most commonly used experimental animal models in the study of IPF and to underline the urgent need to seek out new, more satisfactory models.


Subject(s)
Idiopathic Pulmonary Fibrosis , Animals , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/therapy
4.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38543148

ABSTRACT

Sodium glucose cotransporter 2 (SGLT2) inhibitors are a class of glucose-lowering agents widely used for the treatment of type 2 diabetes mellitus. A number of clinical trials in type 2 diabetic patients with different degrees of renal impairment have clearly demonstrated that SGLT2 inhibitors reduce the progression rate of diabetic kidney disease. Furthermore, recent studies have shown that SGLT2 inhibitors also exert a protective effect in the case of non-diabetic kidney disease. Consequently, it has been hypothesized that the nephroprotective activity of these drugs could exceed the canonical impact on glycemic control and that the resulting beneficial effects could be the consequence of their pleiotropic properties (proven reduction of inflammation, fibrosis, oxidative stress and sympathetic nervous activity) both at systemic and tissue levels, suggesting that the efficacy of these drugs could also be extended to non-diabetic nephropathies. This review focuses on the nephroprotective effects of SGLT2 inhibitors in different experimental models of non-diabetic kidney disease. The different glucose-independent mechanisms potentially implemented by SGLT2 inhibitors to ultimately protect the non-diabetic kidney are described in detail, and conflicting results, when present, are discussed.

5.
Front Cell Neurosci ; 18: 1335849, 2024.
Article in English | MEDLINE | ID: mdl-38481632

ABSTRACT

Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.

6.
iScience ; 27(2): 108851, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318387

ABSTRACT

The efficacy of COVID-19 vaccination relies on the induction of neutralizing antibodies, which can vary among vaccine recipients. In this study, we investigated the potential factors affecting the neutralizing antibody response by combining plasma and urine proteomics and gut microbiota analysis. We found that activation of the LXR/FXR pathway in plasma was associated with the production of ACE2-RBD-inhibiting antibodies, while urine proteins related to complement system, acute phase response signaling, LXR/FXR, and STAT3 pathways were correlated with neutralizing antibody production. Moreover, we observed a correlation between the gut microbiota and plasma and urine proteins, as well as the vaccination response. Based on the above data, we built a predictive model for vaccination response (AUC = 0.85). Our study provides insights into characteristic plasma and urine proteins and gut microbiota associated with the ACE2-RBD-inhibiting antibodies, which could benefit our understanding of the host response to COVID-19 vaccination.

7.
Article in English | MEDLINE | ID: mdl-38410917

ABSTRACT

AIM: The purpose of this project was to compare the characteristics of two experimental murine models of primary intraocular lymphoma (PIOL) and determine which experimental model is most suitable for further investigational research to elucidate the pathophysiology of PIOL and to find new therapeutical strategies. METHODS: In both experimental models PIOL was induced in immunocompetent mice with intravitreal injection of syngeneic B-cell lymphoma cell lines. Murine strain C3H/HeN and cell line 38C13 were used in the first model and BALB/CaNn mice and cell line A20 in the second model. During the experiments, thorough clinical evaluation (using photo documentation, ultrasonography, and MRI) and histological evaluation were performed. RESULTS: In both models, the percentage of PIOL development was high, reaching nearly 80%. Disease progression was faster in C3H/HeN with exophthalmos occurring on average on day 10. Vitreous involvement was a predominant sign in the clinical presentation of this group. In BALB/CaNn mice exophthalmos occurred on average on day 22. The predominant clinical sign in the BALB/CaNn group was tumorous infiltration of the retina, optic disc, and tumorous retinal detachment. CONCLUSION: Slower progression of the disease in BALB/CaNn mice, greater possibility to examine the retina due to mild vitreous involvement, and later occurrence of exophthalmos makes this strain more suitable for further investigational research.

8.
J Sci Food Agric ; 104(7): 3807-3815, 2024 May.
Article in English | MEDLINE | ID: mdl-38270195

ABSTRACT

Olive oil production yields a substantial volume of by-products, constituting up to 80% of the processed fruits. The olive pomace by-product represents a residue of significant interest due to the diverse bioactive compounds identified in it. However, a thorough characterization and elucidation of the biological activities of olive pomace are imperative to redirect its application for functional food, nutraceutical, and pharmaceutical purposes both for animals and humans. In this review, we examine data from experimental models, including immortalized human vascular endothelial cells, human corneal and conjunctival epithelial cells, human colorectal adenocarcinoma cells, non-tumorigenic human hepatoma cells, and murine macrophages alongside clinical trials. These studies aim to validate the safety, nutritional value, and pharmacological effects of olive pomace. In vitro studies suggest that biophenols extracted from olive pomace possess antioxidant, anti-inflammatory, and antiproliferative properties that could be beneficial in mitigating cardiovascular disorders, particularly atherosclerosis, hepatosteatosis, and dry-eye disease. Protective effects against dry-eye disease were confirmed in a mouse model assay. Olive pomace used in the feed for fish and poultry has demonstrated the ability to enhance animals' immunity and improve nutritional quality of meat and eggs. Human clinical trials are scarce and have revealed minimal biological changes following the consumption of olive pomace-enriched foods. However, alterations in certain biomarkers tentatively suggest cardioprotective properties. The review underscores the value of olive pomace while addressing potential drawbacks and future perspectives, with a specific focus on the need for further investigation into the animal feed and human nutritional properties of olive pomace. © 2024 Society of Chemical Industry.


Subject(s)
Eye Diseases , Olea , Humans , Animals , Mice , Olea/chemistry , Endothelial Cells , Olive Oil/chemistry , Dietary Supplements
9.
iScience ; 27(1): 108747, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38222110

ABSTRACT

Massively parallel reporter assay measures transcriptional activities of various cis-regulatory modules (CRMs) in a single experiment. We developed a thermodynamic computational model framework that calculates quantitative levels of gene expression directly from regulatory DNA sequences. Using the framework, we investigated the molecular mechanisms of cis-regulatory mutations of a synthetic enhancer that cause abnormal gene expression. We found that, in a human cell line, competitive binding between family transcription factors (TFs) with slightly different binding preferences significantly increases the accuracy of recapitulating the transcriptional effects of thousands of single- or multi-mutations. We also discovered that even if various harmful mutations occurred in an activator binding site, CRM could stably maintain or even increase gene expression through a certain form of competitive binding between family TFs. These findings enhance understanding the effect of SNPs and indels on CRMs and would help building robust custom-designed CRMs for biologics production and gene therapy.

10.
Plants (Basel) ; 13(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38256707

ABSTRACT

Breast cancer (BC) is the largest contributor to cancer deaths in women worldwide. Various parts of plants, including fruits, are known for their therapeutic properties and are used in traditional medicine. Fruit species exhibit anticancer activities due to the presence of bioactive natural compounds such as flavonoids and carotenoids. The Vaccinium spp. are fleshy berry-like drupes and are rich in bioactive compounds, with flavonols, flavanols, chalcones, and phenolic acids as the major groups of compounds. While there is clear evidence linking Vaccinium berries with a decreased risk of BC both in in vivo and in vitro experiments, the exact mechanisms involved in the protective effects of Vaccinium spp. rich extracts on BC cells are not fully understood. Thus, the purpose of this review is to highlight the mechanisms of action involved in the therapeutic potential of Vaccinium berries against BC in experimental models.

11.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279302

ABSTRACT

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells. UCHL1 mutants, containing amino acid substitutions, influence catalytic activity and its aggregability. Some of them protect cells and transgenic mice in toxin-induced Parkinson's disease (PD) models. Studies of putative protein partners of UCHL1 revealed about sixty individual proteins located in all major compartments of the cell: nucleus, cytoplasm, endoplasmic reticulum, plasma membrane, mitochondria, and peroxisomes. These include proteins related to the development of PD, such as alpha-synuclein, amyloid-beta precursor protein, ubiquitin-protein ligase parkin, and heat shock proteins. In the context of the catalytic paradigm, the importance of these interactions is not clear. However, there is increasing understanding that UCHL1 exhibits various effects in a catalytically independent manner through protein-protein interactions. Since this protein represents up to 5% of the soluble protein in the brain, PD-related changes in its structure will have profound effects on the proteomes/interactomes in which it is involved. Growing evidence is accumulating that the role of UCHL1 in PD is obviously determined by a balance of canonic catalytic activity and numerous activity-independent protein-protein interactions, which still need better characterization.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/genetics , Parkinson Disease/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Protein Processing, Post-Translational , Ubiquitins/metabolism
12.
Cell Tissue Bank ; 25(1): 187-194, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37145371

ABSTRACT

Primary cell cultures are essential tools for elucidating the physiopathological mechanisms of the cardiovascular system. Therefore, a primary culture growth protocol of cardiovascular smooth muscle cells (VSMCs) obtained from human abdominal aortas was standardized. Ten abdominal aorta samples were obtained from patients diagnosed with brain death who were organ and tissue donors with family consent. After surgical ablation to capture the aorta, the aortic tissue was removed, immersed in a Custodiol® solution, and kept between 2 and 8 °C. In the laboratory, in a sterile environment, the tissue was fragmented and incubated in culture plates containing an enriched culture medium (DMEM/G/10% fetal bovine serum, L-glutamine, antibiotics and antifungals) and kept in an oven at 37 °C and 5% CO2. The aorta was removed after 24 h of incubation, and the culture medium was changed every six days for twenty days. Cell growth was confirmed through morphological analysis using an inverted optical microscope (Nikon®) and immunofluorescence for smooth muscle alpha-actin and nuclei. The development of the VSMCs was observed, and from the twelfth day, differentiation, long cytoplasmic projections, and adjacent cell connections occurred. On the twentieth day, the morphology of the VSMCs was confirmed by actin fiber immunofluorescence, which is a typical characteristic of VSMCs. The standardization allowed VSMC growth and the replicability of the in vitro test, providing a protocol that mimics natural physiological environments for a better understanding of the cardiovascular system. Its use is intended for investigation, tissue bioengineering, and pharmacological treatments.


Subject(s)
Aorta, Abdominal , Vascular Diseases , Humans , Brain Death/metabolism , Brain Death/pathology , Muscle, Smooth, Vascular/metabolism , Vascular Diseases/metabolism , Vascular Diseases/pathology , Models, Theoretical , Myocytes, Smooth Muscle , Brain , Cells, Cultured
13.
Int J Pediatr Otorhinolaryngol ; 176: 111814, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101097

ABSTRACT

OBJECTIVE: To review and summarize recently published key articles on the topics of animal models, cell culture studies, tissue biomedical engineering and regeneration, and new models in relation to otitis media (OM). DATA SOURCE: Electronic databases: PubMed, National Library of Medicine, Ovid Medline. REVIEW METHODS: Key topics were assigned to the panel participants for identification and detailed evaluation. The PubMed reviews were focused on the period from June 2019 to June 2023, in any of the objective subject(s) or keywords listed above, noting the relevant references relating to these advances with a global overview and noting areas of recommendation(s). The final manuscript was prepared with input from all panel members. CONCLUSIONS: In conclusion, ex vivo and in vivo OM research models have seen great advancements in the past 4 years. From the usage of novel genetic and molecular tools to the refinement of in vivo inducible and spontaneous mouse models, to the introduction of a wide array of reliable middle ear epithelium (MEE) cell culture systems, the next five years are likely to experience exponential growth in OM pathophysiology discoveries. Moreover, advances in these systems will predictably facilitate rapid means for novel molecular therapeutic studies.


Subject(s)
Otitis Media , Animals , Mice , Humans , Otitis Media/drug therapy , Ear, Middle , Disease Models, Animal , Biomedical Engineering , Cell Culture Techniques
14.
Life Sci ; 334: 122238, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37925139

ABSTRACT

AIMS: Bacterial translocation, defined as the presence of living bacteria or bacterial fragments in both mesenteric lymph nodes or systemic circulation, can cause a severe inflammatory reaction in patients with cirrhosis. This study aimed to compare lipid peroxidation associated with liver damage in different experimental models of bile duct ligation: proximal double ligation and transection versus proximal simple ligation versus sham. MATERIALS AND METHODS: Sixty-two male rats underwent one of three bile duct surgical interventions: proximal double ligation and transection (n = 22); proximal simple ligation (n = 19); or sham operation (n = 21). We performed microbiological culture of mesenteric lymph nodes; portal and cava blood, spleen and liver cultures; and histological analysis of liver parenchyma. Samples of blood and liver were obtained at laparotomy for malondialdehyde quantification. KEY FINDINGS: Serum malondialdehyde levels were significantly higher in simple ligature animals (3.7 nmol/mg, standard deviation [SD] 2.1) compared to controls (1.6 nmol/mg SD 0.5; p = 0.001) or double ligature (0.3 nmol/mg SD 0.3; p = 0.001). Liver malondialdehyde levels were significantly higher in animals subjected to double ligation vs controls (9.0 nmol/mg SD 2.8 vs. 1.7 nmol/mg SD 1.0; p = 0.0007) and simple ligature (2.9 nmol/mg SD 2.0; p = 0.0001). Overall incidence of bacterial translocation was similar in simple and double ligatures (22.2 % and 21 % respectively), and significantly higher than in controls. SIGNIFICANCE: the type of bile duct ligation influences the type and localization of lipid peroxidation, but does not influence the development of bacterial translocation.


Subject(s)
Bile Ducts , Liver , Humans , Rats , Male , Animals , Rats, Sprague-Dawley , Lipid Peroxidation , Bile Ducts/surgery , Common Bile Duct/surgery , Ligation , Malondialdehyde
15.
J Diabetes Metab Disord ; 22(2): 1021-1028, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37975101

ABSTRACT

Objectives: Animal models are widely used to develop newer drugs for treatment of diabetes and its complications. We conducted a systematic review to find various animal models to induce diabetes and also the suitable methods in various diabetic complications. With an emphasis on the animal models of diabetes induction, this review provides a basic overview of diabetes and its various types. It focused on the use of rats and mice for chemical, spontaneous, surgical, genetic, viral, and hormonal induction approaches. Methods: All observations and research conducted on Diabetes and its complications published up to 18 May 2023 in PubMed, Web of Science, Scopus and Conchrane Library databases were included. Main outcome measures were reporting the induction of diabetes in experimental animals, the various animal models for diabetic complications including diabetic nephropathy, diabetic retinopathy, diabetic neuropathy and diabetic osteopathy. The quality of reporting of included articles and risk of bias were assessed. Results: We reached various articles and found that rats and mice are the most frequently used animals for inducing diabetes. Chemical induction is the most commonly used followed by spontaneous and surgical methods. With slight modification various breeds and species are developed to study and induce specific complications on eyes, kidneys, neurons and bones. Conclusions: Our review suggested that rats and mice are the most suitable animals. Furthermore, chemical induction is the method frequently used by experimenters. Moreover, high quality studies are required to find the suitable methods for diabetic complications.

16.
iScience ; 26(11): 108198, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026204

ABSTRACT

Cervical cancer remains a significant health issue in developing countries. However, finding a preclinical model that accurately reproduces tumor characteristics is challenging. Therefore, we established a patient-derived organoids (PDOs) biobank containing 67 cases of heterogeneous cervical cancer that mimic the histopathological and genomic characteristics of parental tumors. The in vitro response of the organoids indicated their ability to capture the radiological heterogeneity of the patients. To model individual responses to adoptive T cell therapy (ACT), we expanded tumor-infiltrating lymphocytes (TILs) ex vivo and co-cultured them with paired organoids. The PDOs-TILs co-culture system demonstrates clear responses that correspond to established immunotherapy efficiency markers like the proportion of CTLs. This study supports the potential of the PDOs platform to guide treatment in prospective interventional trials in cervical cancer.

17.
iScience ; 26(10): 107917, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37817938

ABSTRACT

The activation of IKK/NF-κB by genotoxic stress is a crucial process in the DNA damage response. Due to the anti-apoptotic impact of NF-κB, it can affect cell-fate decisions upon DNA damage and therefore interfere with tumor therapy-induced cell death. Here, we developed a dynamical model describing IKK/NF-κB signaling that faithfully reproduces quantitative time course data and enables a detailed analysis of pathway regulation. The approach elucidates a pathway topology with two hubs, where the first integrates signals from two DNA damage sensors and the second forms a coherent feedforward loop. The analyses reveal a critical role of the sensor protein PARP-1 in the pathway regulation. Introducing a method for calculating the impact of changes in individual components on pathway activity in a time-resolved manner, we show how irradiation dose influences pathway activation. Our results give a mechanistic understanding relevant for the interpretation of experimental and clinical studies.

18.
BMC Ophthalmol ; 23(1): 421, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858128

ABSTRACT

Diabetic retinopathy (DR), one of the leading causes of visual impairment and blindness worldwide, is one of the major microvascular complications in diabetes mellitus (DM). Globally, DR prevalence among DM patients is 25%, and 6% have vision-threatening problems among them. With the higher incidence of DM globally, more DR cases are expected to be seen in the future. In order to comprehend the pathophysiological mechanism of DR in humans and discover potential novel substances for the treatment of DR, investigations are typically conducted using various experimental models. Among the experimental models, in vivo models have contributed significantly to understanding DR pathogenesis. There are several types of in vivo models for DR research, which include chemical-induced, surgical-induced, diet-induced, and genetic models. Similarly, for the in vitro models, there are several cell types that are utilised in DR research, such as retinal endothelial cells, Müller cells, and glial cells. With the advancement of DR research, it is essential to have a comprehensive update on the various experimental models utilised to mimic DR environment. This review provides the update on the in vitro, in vivo, and ex vivo models used in DR research, focusing on their features, advantages, and limitations.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Vision, Low , Humans , Endothelial Cells/pathology , Blindness/etiology , Retina/pathology , Vision, Low/etiology , Prevalence
19.
iScience ; 26(9): 107499, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37670791

ABSTRACT

Given the importance of gut microbial communities for human health, we may want to ensure their stability in terms of species composition and function. Here, we built a mathematical model of a simplified gut composed of two connected patches where species and metabolites can flow from an upstream patch, allowing upstream species to affect downstream species' growth. First, we found that communities in our model are more stable if they assemble through species invasion over time compared to combining a set of species from the start. Second, downstream communities are more stable when species invade the downstream patch less frequently than the upstream patch. Finally, upstream species that have positive effects on downstream species can further increase downstream community stability. Despite it being quite abstract, our model may inform future research on designing more stable microbial communities or increasing the stability of existing ones.

SELECTION OF CITATIONS
SEARCH DETAIL
...